Structure and Functions of Mitochondria



The cytoplasm of nearly all eukaryotic cells contains mitochondria; especially abundant in cells and parts of cells that are associated with active processes. For example, in cardiac muscle, mitochondria surround the contractile elements. Hummingbird flight muscle is one of the richest sources of mitochondria known. Thus, from their distribution alone one would suspect that they are involved in energy production. 


Multicellular organisms probably could not exist without mitochondria. Through oxidative phosphoryation mitochondria make efficient use of nutrient molecules. They are the reason that we need oxygen at all. The double-membraned mitochondria create distinct compartments within the organelle, and are themselves very different in structure and in function. 


Electron micrographs have revealed the three dimensional structure of mitochondria. Mitochondria in situ can be free in the cytoplasm or packed in among more rigid structures, such as among the myofibrils of cardiac muscle tissue. In cells such as muscle, it is clear that mitochondria are not spherical, and often are not even ellipsoid. In some tissues, the mitochondria are almost filamentous, a characteristic that two dimensional micrographs may fail to reveal. 


A planar section cuts through one or several parts of the organelle, making a single organelle appear to be more than one. The image we see of a circular or ellipsoidal organelle may disguise the true nature of the mitochondrion. The outer membrane is a relatively simple phospholipid bilayer, containing protein structures called porins which render it permeable to molecules of about 10 kilo Daltons or less (the size of the smallest proteins). Ions, nutrient molecules, ATP, ADP, etc. can pass through the outer membrane with ease. 

The inner membrane is freely permeable only to oxygen, carbon dioxide, and water. Its structure is highly complex, including all of the complexes of the electron transport system, the ATP synthetase complex, and transport proteins.


The wrinkles, or folds, are organized into lamillae (layers), called the cristae (singlular: crista). The cristae greatly increase the total surface area of the inner membrane. The larger surface area makes room for many more of the above-named structures than if the inner membrane were shaped like the outer membrane. 


The membranes create two compartments. The intermembrane space, as implied, is the region between the inner and outer membranes. It has an important role in the primary function of mitochondria, which is oxidative phosphorylation. 


The matrix contains the enzymes that are responsible for the citric acid cycle reactions. The matrix also contains dissolved oxygen, water, carbon dioxide, the recyclable intermediates that serve as energy shuttles, and much more. Because of the folds of the cristae, no part of the matrix is far from the inner membrane. Therefore matrix components can diffuse to inner membrane complexes and transport proteins within a relatively short time.


Comments

Popular posts from this blog

Challenging obstacles for immigrants

What is Linux Shell?

Permission and Ownership using awk